Chickpea - Chicken Peas

- 21.50

Vinegar-Braised Chicken with Leeks and Peas
photo src: goodtaste.tv

The chickpea or chick pea (Cicer arietinum) is a legume of the family Fabaceae, subfamily Faboideae. Its different types are variously known as gram, or Bengal gram, garbanzo or garbanzo bean, Egyptian pea, ceci, cece, chana, or Kabuli chana. Its seeds are high in protein. It is one of the earliest cultivated legumes: 7,500-year-old remains have been found in the Middle East.


Rosemary Roast Chicken with French Peas | TasteSpotting
photo src: www.tastespotting.com


Maps, Directions, and Place Reviews



Etymology

The name "chickpea" traces back through the French chiche to cicer, Latin for 'chickpea' (from which the Roman cognomen Cicero was taken). The Oxford English Dictionary lists a 1548 citation that reads, "Cicer may be named in English Cich, or ciche pease, after the Frenche tongue." The dictionary cites "Chick-pea" in the mid-18th century; the original word in English taken directly from French was chich, found in print in English in 1388.

The word garbanzo, from an alteration of Old Spanish arvanço, came first to American English as garvance in the 17th century, being gradually anglicized to calavance, though it came to refer to a variety of other beans (cf. calavance). The current form garbanzo comes directly from modern Spanish, and is commonly used in regions of the United States with a strong Mexican or Spanish influence.


Chicken Peas Video



History

Domesticated chickpeas have been found in the aceramic levels of Jericho (PPNB) along with Çayönü in Turkey and in Neolithic pottery at Hacilar, Turkey. They were found in the late Neolithic (about 3500 BCE) at Thessaly, Kastanas, Lerna and Dimini, Greece. In southern France, Mesolithic layers in a cave at L'Abeurador, Aude, have yielded wild chickpeas carbon dated to 6790±90 BCE.

Chickpeas are mentioned in Charlemagne's Capitulare de villis (about 800 CE) as cicer italicum, as grown in each imperial demesne. Albertus Magnus mentions red, white, and black varieties. Nicholas Culpeper noted "chick-pease or cicers" are less "windy" than peas and more nourishing. Ancient people also associated chickpeas with Venus because they were said to offer medical uses such as increasing sperm and milk, provoking menstruation and urine, and helping to treat kidney stones. "White cicers" were thought to be especially strong and helpful.

In 1793, ground-roast chickpeas were noted by a German writer as a substitute for coffee in Europe. In the First World War, they were grown for this use in some areas of Germany. They are still sometimes brewed instead of coffee.

Genome sequencing

Sequencing of the chickpea genome has been completed for 90 chickpea genotypes, including several wild species. A collaboration of 20 research organizations, led by the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) identified more than 28,000 genes and several million genetic markers. Scientists expect this work will lead to the development of superior cultivars, among which 77 have already been released to farmers around the world.

The new research will benefit the millions of developing country farmers who grow chickpea as a source of much needed income, as well as for its ability to add nitrogen to the soil in which it grows. Production is growing rapidly across the developing world, especially in West Asia, where it has increased four-fold over the past 30 years. India is by far the world largest producer, but is also the largest importer.


Chicken Breast with Homemade Croutons and Peas | Diethood
photo src: diethood.com


Description

The plant grows to 20-50 cm (8-20 in) high and has small, feathery leaves on either side of the stem. Chickpeas are a type of pulse, with one seedpod containing two or three peas. It has white flowers with blue, violet, or pink veins.

Types

Several varieties of chickpea are cultivated throughout the world. Bengal gram or 'Desi chana' is probably the earliest variety because it closely resembles both seeds found on archaeological sites and the wild plant ancestor of domesticated chickpeas, Cicer reticulatum, which only grows in southeast Turkey, where chickpeas are believed to have originated. 'Desi chana' has small, darker seeds and a rough coat. It is grown mostly in India and other parts of the Indian subcontinent, as well as in Ethiopia, Mexico, and Iran. Desi means 'country' or 'local' in Hindustani; its other names include kala chana ("black chickpea" in both Hindi and Urdu) or chholaa boot. This variety is hulled and split to make chana dal. A closely related variety is the Bombay chickpea ('Bambai chana'), which is also dark but slightly larger than 'Desi'.

Garbanzo bean or 'Kabuli' chana is lighter-coloured, larger, and with a smoother coat, and is mainly grown in the Mediterranean, Southern Europe, Northern Africa, South America, and the Indian subcontinent. The name means "from Kabul" in Hindi and Urdu, and this variety was thought to come from Kabul, Afghanistan when it was introduced to India in the 18th century. An uncommon black chickpea, ceci neri, is grown only in Apulia, in southeastern Italy. It is around the same size as garbanzo beans, being both larger and darker than the 'Desi' variety.

Green chickpeas are common in the state of Maharashtra, India. In Marathi and Bengali, they are called harbara. Tender, immature green chickpeas are often sold as a street snack. These can be eaten raw or roasted on coal before the skin is removed; the latter snack is called hula in Marathi.


chicken n peas 2 |
photo src: lifekirecipe.com


Uses

Human consumption

Chickpeas are usually rapidly boiled for 10 minutes and then simmered for a longer period. Dried chickpeas need a long cooking time (1-2 hours) but will easily fall apart when cooked longer. If soaked for 12-24 hours before use, cooking time can be shortened by around 30 minutes. Chickpeas can also be pressure cooked or sous vide cooked at 90 °C (194 °F). Chickpeas (Cicer arietinum) do not cause lathyrism. Similarly named "chickling peas" (Lathyrus sativus) and other plants of the genus Lathyrus contain the toxins associated with lathyrism.

Mature chickpeas can be cooked and eaten cold in salads, cooked in stews, ground into gram flour (also known as chickpea flour and besan and used frequently in Indian cuisine), ground and shaped in balls and fried as falafel, or stirred into a batter and baked to make farinata, also called cecina, or fried to make panelle.

Chickpeas are popular in the Iberian Peninsula. In Portugal, they are one of the main ingredients in rancho, eaten with pasta and meat, including Portuguese sausages, or with rice. They are used in other hot dishes with bacalhau and in soup. In Spain, they are used cold in tapas and salads, as well as in cocido madrileño. In Italy, chickpeas are eaten with pasta or in soup. In the southern regions such as Sicily, grounded chickpeas flour is used to produce a famous local street food called panelle. In Egypt, they are used as a topping for kushari.

Hummus is the Arabic word for chickpeas, which are often cooked and ground into a paste and mixed with tahini (sesame seed paste), the blend called hummus bi tahini, or chickpeas are roasted, spiced, and eaten as a snack, such as leblebi. By the end of the 20th century, hummus had become commonplace in American cuisine. By 2010, 5% of Americans consumed hummus on a regular basis, and it was present in 17% of American households.

Some varieties of chickpeas can be popped and eaten like popcorn.

Chickpeas and Bengal grams are used to make curries and are one of the most popular vegetarian foods in the Indian subcontinent and in diaspora communities of many other countries. Popular dishes in Indian cuisine are made with chickpea flour, such as mirchi bajji and mirapakaya bajji Telugu. In India, as well as in the Levant, unripe chickpeas are often picked out of the pod and eaten as a raw snack and the leaves are eaten as a leaf vegetable in salads.

Chickpea flour is used to make "Burmese tofu" which was first known among the Shan people of Burma. In South Asian cuisine the flour (besan) is used as a batter to coat vegetables before deep frying to make pakoras. The flour is also used as a batter to coat vegetables and meats before frying, or fried alone such as panelle (little bread), a chickpea fritter from Sicily. Chickpea flour is used to make the Mediterranean flatbread socca and called panisse in Provence, southern France. It is made of cooked chickpea flour, poured into saucers, allowed to set, cut in strips, and fried in olive oil, often eaten during Lent. In Tuscany chickpea flour (farina di ceci) is used to make an oven baked pancake: the flour is mixed with water, oil and salt.Chickpea flour known as Kadlehittu in Kannada is used for making sweet dish Mysorepak.

In the Philippines, chickpeas preserved in syrup are eaten as sweets and in desserts such as halo-halo. Ashkenazi Jews traditionally serve whole chickpeas at a Shalom Zachar celebration for baby boys.

Guasanas are a Mexican chickpea recipe in which the beans are cooked in water and salt.

A chickpea-derived liquid (aquafaba) can be used as an egg white replacement to make meringue.

Animal feed

Chickpeas serve as an energy and protein source as animal feed.

Raw chickpeas have a lower trypsin and chymotrypsin inhibitor content than peas, common beans, and soybeans. This leads to higher nutrition values and fewer digestive problems in nonruminants. Nonruminant diets can be completed with 200 g/kg of raw chickpeas to promote egg production and growth of birds and pigs. Higher amounts can be used when chickpeas are treated with heat.

Experiments have shown that ruminants grow equally well and produce an equal amount and quality of milk when soybean or cereal meals are replaced with chickpeas. Pigs show the same performance, but growing pigs experience a negative effect of raw chickpea feed; extruded chickpeas can increase performance even in growing pigs. In poultry diet experiments with untreated chickpeas, only young broilers (starting period) showed worse performance. Fish performed equally well when their soybean or cereal diet was replaced by extruded chickpeas.

Secondary components of legumes -- such as lecithin, polyphenols, oligosaccharides, and amylase, protease, trypsin and chymotrypsin inhibitors -- can lead to lower nutrient availability, thus to negative effects in growth and health of animals (especially in nonruminants). Ruminants have generally less problems to digest legumes with secondary components, since they can inactivate them in the rumen liquor. Their diets can be supplemented by 300 g/kg or more raw chickpea seeds. However, protein digestibility and energy availability can be improved through treatments, such as germination, dehulling, and heat. Extrusion is a very good heat technique to destroy secondary components in legumes, since the proteins are irreversibly denatured. Overprocessing may decrease the nutritional value; extrusion leads to losses in minerals and vitamins, while dry heating does not change the chemical composition.


Spring Chicken with Carrots and Peas Recipe : Rachael Ray : Food ...
photo src: www.foodnetwork.com


Nutrition

Chickpeas are a nutrient-dense food, providing rich content (20% or higher of the Daily Value, DV) of protein, dietary fibre, folate, and certain dietary minerals such as iron and phosphorus. Thiamin, vitamin B6, magnesium, and zinc contents are moderate, providing 10-16% of the DV. Chickpeas have a Protein Digestibility Corrected Amino Acid Score of about 0.76, which is higher than many other legumes and cereals.

Compared to reference levels established by the United Nations Food and Agricultural Organization and World Health Organization, proteins in cooked and germinated chickpeas are rich in essential amino acids such as lysine, isoleucine, tryptophan, and total aromatic amino acids.

A 100-g serving of cooked chickpeas provides 164 kilocalories (690 kJ). Cooked chickpeas are 60% water, 27% carbohydrates, 9% protein and 3% fat (table). 75% of lipid content is unsaturated fatty acids for which linoleic acid comprises 43% of total fat.

Effects of cooking

Cooking treatments do not lead to variance in total protein and carbohydrate content. Soaking and cooking of dry seeds possibly induces chemical modification of protein-fibre complexes, which leads to an increase in crude fibre content. Thus, cooking can increase protein quality by inactivating or destroying heat-labile antinutritional factors. Cooking also increases protein digestibility, essential amino acid index, and protein efficiency ratio. Although cooking lowers concentrations of amino acids such as tryptophan, lysine, total aromatic, and sulphur-containing amino acids, their contents are still higher than proposed by the FAO/WHO reference. Diffusion of reducing sugars, raffinose, sucrose and others into cooking water reduces or completely removes these components. Cooking also significantly reduces fat and mineral contents. The B vitamins riboflavin, thiamin, niacin, and pyridoxine dissolve into cooking water at differing rates.

Germination

Germination of chickpeas improves protein digestibility, although at a lower level than cooking. Germination degrades proteins to simple peptides, so improves crude protein, nonprotein nitrogen, and crude fiber content. Germination decreases lysine, tryptophan, sulphur and total aromatic amino acids, but most contents are still higher than proposed by the FAO/WHO reference pattern.

Oligosaccharides, such as stachyose and raffinose, are reduced in higher amounts during germination than during cooking. Minerals and B vitamins are retained more effectively during germination than with cooking. Phytic acids are reduced significantly, but trypsin inhibitor, tannin, and saponin reduction is less effective than cooking.

Autoclaving, microwave cooking, boiling

Protein digestibility is improved by all treatments of cooking. Essential amino acids are slightly increased by boiling and microwave cooking when compared to autoclaving and germination. Overall, microwave cooking leads to a significantly lower loss of nutrients compared to autoclaving and boiling.

Finally, all treatments lead to an improved protein digestibility, protein efficiency ratio, and essential amino acid index. Microwave cooking seems to be an effective method to prepare chickpeas because of its improvement of nutritional values and its lower cooking time.

Leaves

In some parts of the world, young chickpea leaves are consumed as cooked green vegetables. Especially in malnourished populations, it can supplement important dietary nutrients, because regions where chickpeas are consumed have been sometimes found to have populations lacking micronutrients. Chickpea leaves have a significantly higher mineral content than cabbage and spinach. In natural settings, environmental factors and nutrient availability could influence mineral concentrations. Nevertheless, consumption of chickpea leaves is recommended for areas where chickpeas are produced as food for humans.

Preliminary research shows that chickpea consumption may lower blood cholesterol.


Sesame Chicken With Snow Peas Recipe : Food Network Kitchen : Food ...
photo src: www.foodnetwork.com


Production

Chickpeas are grown in the Indian subcontinent, Australia, Mediterranean, western Asia, the Palouse region, and the Great Plains.

India is the world leader in chickpea (Bengal gram) production, and produces approximately 10 times as much as the second-largest producer, Australia. Other key producers are Pakistan, Turkey, Myanmar, Ethiopia, and Iran.

Heat and micronutrient cultivation

Agricultural yield for Chickpea is often based on genetic and phenotypic variability which has recently been influenced by artificial selection. The uptake of micronutrients such as inorganic phosphorus or nitrogen is vital to the plant development of Cicer arietinum, commonly known as the perennial chickpea. Heat cultivation and micronutrient coupling are two relatively unknown methods that are used to increase the yield and size of the chickpea. Recent research has indicated that a combination of heat treatment along with the two vital micronutrients, phosphorus and nitrogen, are the most critical components to increasing the overall yield of Cicer arietinum.

Perennial chickpeas are a fundamental source of nutrition in animal feed as they are high sources of energy and protein for livestock. Unlike other food crops, the perennial chickpea shows a remarkable capacity to change its nutritional content in response to heat cultivation. Treating the chickpea with a constant heat source increases its protein content almost three-fold. Consequently, the impact of heat cultivation not only affects the protein content of the chickpea itself, but the ecosystem that it supports as well. Increasing the height and size of chickpea plants involves using micronutrient fertilization with varying doses of inorganic phosphorus and nitrogen.

The level of phosphorus that a chickpea seed is exposed to during its lifecycle has a positive correlation relative to the height of the plant at full maturity. Increasing the levels of inorganic phosphorus at all doses incrementally increases the height of the chickpea plant. Thus, the seasonal changes in phosphorus soil content as well as periods of drought that are known to be a native characteristic of the dry Middle-Eastern region where the chickpea is most commonly cultivated have a strong effect on the growth of the plant itself. Plant yield is also affected by a combination of phosphorus nutrition and water supply, resulting in a 12% increase in yield of the crop.

Nitrogen nutrition is another factor that affects the yield of Cicer arietinum, although the application itself differs from other perennial crops with regards to the levels administered on the plant. High doses of nitrogen inhibit the yield of the chickpea plant. Drought stress is a likely factor that also inhibits the uptake of nitrogen and subsequent fixation in the roots of Cicer arietinum. The growth of the perennial chickpea is dependent on the balance between nitrogen fixation and assimilation that is also characteristic of many other agricultural plant types. The influence of drought stress, sowing date, and mineral nitrogen supply all have an effect on the yield and size of the plant, with trials showing that Cicer arietinum differed from other plant species in its capacity to assimilate mineral nitrogen supply from soil during drought stress. Additional minerals and micronutrients make the absorption process of nitrogen and phosphorus more available. Inorganic phosphate ions are generally attracted towards charged minerals such as iron and aluminium oxides.

Additionally, growth and yield are also limited by zinc and boron deficiencies in the soil. Boron-rich soil resulted in an increase of chickpea yield and size, while soil fertilization with zinc seemed to have no apparent effect on the chickpea yield.


Chicken Tagine with Artichoke Hearts and Peas « Eye for a Recipe
photo src: eyeforarecipe.ca


Pathogens

Pathogens in chickpeas are the main cause for yield loss (up to 90%). One example is the fungus Fusarium oxysporum f. sp. cicero, present in most of the major pulse crop-growing areas and causing regular yield damages between 10 and 15%.

From 1978 until 1995, the worldwide number of pathogens increased from 49 to 172, of which 35 have been recorded in India. These pathogens originate from the groups of bacteria, fungi, viruses, mycoplasma and nematodes and show a high genotypic variation. The most widely distributed pathogens are Ascochyta rabiei (35 countries), Fusarium oxysporum f. sp. cicero (32 countries) Uromyces ciceris-arietini (25 countries), bean (pea) leaf roll virus (23 countries), and Macrophomina phaseolina (21 countries). Ascochyta disease emergence is favored by wet weather; spores are carried to new plants by wind and water splash.

The stagnation of yield improvement over the last decades is linked to the susceptibility to pathogens. Research for yield improvement, such as an attempt to increase yield from 0.8 to 2.0 tons per hectare by breeding cold-resistant varieties, is always linked with pathogen-resistance breeding as pathogens such as Ascochyta rabiei and F. o. f. sp. cicero flourish in conditions such as cold temperature. Research started selecting favourable genes for pathogen resistance and other traits through marker-assisted selection. The use of this method is a promising sign for the future to achieve significant yield improvements.

Source of the article : Wikipedia



EmoticonEmoticon

 

Start typing and press Enter to search